× Home Daftar Isi Disclaimer Tentang Blog
Menu

Serba Ada

Serba Serbi

Penurunan Rumus Orde Reaksi

Materi: laju reaksi
Penurunan rumus untuk orde reaksi 1 dan orde reaksi 2.

Reaksi orde satu

Misalnya reaksi A $\rightarrow$ B Menurut definisi laju reaksi dapat dituliskan:
$ \begin{align} r = - \frac{d[A]}{dt} \end{align} $
Menurut persamaan laju reaksi, karena reaksi adalah tingkat satu, maka dapat ditulis
$ r = k[A] $
Hubungan antara persamaan laju reaksi dengan definisi laju reaksi dapat ditentukan sebagai berikut.
$\begin{align} - \frac{d[A]}{dt} & = k[A] \\ \frac{d[A]}{[A]} & = - k \, dt \end{align} $
Jika diintegralkan maka akan dihasilkan:
$\begin{align} \int \limits_{awal}^{akhir} \frac{d[A]}{[A]} & = \int \limits_{awal}^{akhir} - kdt \\ \ln [A]_{awal}^{akhir} & = -kt ]_{awal}^{akhir} \end{align} $
Jadi, hubungan yang diperoleh dapat dituliskan sebagai berikut:
$ \begin{align} \ln \frac{[A_0]}{[A_t]} = kt \end{align} $
dengan :
$[A_0] = \, $ molaritas pada waktu $ t = 0 $ (M)
$ [A_t] = \, $ molaritas setelah $ t = t $ detik (M)


Reaksi orde dua

Misalnya reaksi A $\rightarrow$ B
Menurut definisi laju reaksi dapat dituliskan:
$ \begin{align} r = - \frac{d[A]}{dt} \end{align} $
Menurut persamaan laju reaksi, karena reaksi adalah tingkat dua, maka dapat ditulis
$ r = k[A]^2 $
Hubungan antara persamaan laju reaksi dengan definisi laju reaksi dapat ditentukan sebagai berikut.
$\begin{align} - \frac{d[A]}{dt} & = k[A]^2 \\ \frac{d[A]}{[A]^2} & = - k \, dt \\ \int \, \frac{d[A]}{[A]^2} & = \int \, - k \, dt \\ \int \, \frac{d[A]}{[A]^2} & = - \int \, k \, dt \end{align} $
Jika keadaan awal pada $ t = 0 $ dan keadaan akhir pada $ t = t $ , maka hubungan yang diperoleh dapat dituliskan sebagai berikut.
$\begin{align} \frac{1}{[A_t]} - \frac{1}{[A_0]} = kt \end{align} $

Waktu paruh (t $\frac{1}{2}$)

       Waktu paruh merupakan waktu yang diperlukan agar molaritas zat sisa menjadi setengah molaritas zat awal. Misal mula-mula molaritas zat A adalah $a$ mol, setelah waktu t$\frac{1}{2}$, maka molaritas zat A sisa sebesar $\frac{1}{2} a$ mol. Waktu paruh sering digunakan untuk perhitungan dalam reaksi peluruhan radioaktif. Selain itu dengan mengetahui waktu paruh laju reaksi dapat dicari dengan lebih cepat.

Untuk reaksi orde satu diperoleh rumus:

$ \begin{align} \ln \frac{[A_0]}{[A_t]} = kt \end{align} $
Sehingga, pada waktu paruh (t$\frac{1}{2}$ ) molaritasnya menjadi $[A_t] = \frac{1}{2}[A_0]$, dan masukkan ke rumus di atas:
$ \begin{align} \ln \frac{[A_0]}{[A_t]} & = kt \\ \ln \frac{[A_0]}{\frac{1}{2}[A_0]} & = kt\frac{1}{2} \\ \ln 2 & = kt\frac{1}{2} \\ t\frac{1}{2} & = \frac{\ln 2}{k} \\ t\frac{1}{2} & = \frac{0,693}{k} \end{align} $
Jadi, waktu paruh untuk reaksi orde satu dapat dirumuskan sebagai berikut:
$ \begin{align} t\frac{1}{2} = \frac{0,693}{k} \end{align} $

       Waktu paruh dapat ditentukan dari hubungan persamaan laju reaksi dengan definisi laju reaksi. Berdasarkan hubungan tersebut dan penjelasan sebelumnya, Untuk reaksi orde dua diperoleh rumus:
$\begin{align} \frac{1}{[A_t]} - \frac{1}{[A_0]} = kt \end{align} $
Seperti pada reaksi orde satu molaritasnya menjadi $[A_t] = \frac{1}{2} [A_0]$, lalu masukkan ke rumus di atas:
$\begin{align} \frac{1}{[A_t]} - \frac{1}{[A_0]} & = kt \\ \frac{1}{\frac{1}{2} [A_0]} - \frac{1}{[A_0]} & = kt\frac{1}{2} \\ \frac{2}{ [A_0]} - \frac{1}{[A_0]} & = kt\frac{1}{2} \\ \frac{1}{[A_0]} & = kt\frac{1}{2} \\ t\frac{1}{2} & = \frac{1}{[A_0]k} \end{align} $
Jadi, waktu paruh untuk reaksi orde 2 dapat ditentukan dengan rumus berikut:
$\begin{align} t\frac{1}{2} & = \frac{1}{[A_0]k} \end{align} $

Contoh:
Reaksi penguraian : A $\rightarrow$ B + C merupakan reaksi orde satu, setelah 20 menit, 40% dari zat A bereaksi.
a. Bagaimana susunan campuran setelah 40 menit?
b. Setelah berapa menit campuran mengandung ketiga zat tersebut dalam jumlah mol yang sama?
Jawab:
*). Perlu diperjelas ini merupakan reaksi orde satu, sehingga rumus-rumus yang akan digunakan untuk menjawab soal adalah mengenai orde satu saja.
*). Waktu saat $t = 20$ menit
*). Zat A yang bereaksi hanya 40% jika diasumsikan mula-mula sebanyak A maka 40%A = 0,4A, sehingga
Rumus reaksi orde satu:
$ \begin{align} \ln \frac{[A_0]}{[A_t]} = kt \end{align} $
Sehingga pada $t = 20$ menit dapat diperoleh:
$ \begin{align} \ln \frac{[A_0]}{[A_t]} & = kt \\ \ln \frac{A }{ A - 0,4A } & = k \times 20 \\ \ln \frac{10A }{ 10A - 4A } & = 20k \\ \ln \frac{10A }{ 6A } & = 20k \\ \ln \frac{5 }{ 3} & = 20k \\ k & = frac{1}{20} \ln \frac{5 }{ 3} \end{align} $

a). Pada $ t = 40 $ menit
$ \begin{align} \ln \frac{[A_0]}{[A_t]} & = kt \\ \ln \frac{A}{A - x} & = \left( frac{1}{20} \ln \frac{5 }{ 3} \right) \times 40 \\ \ln \frac{A}{A - x} & = 2 \ln \frac{5 }{ 3} \\ \ln \frac{A}{A - x} & = \ln \left( \frac{5 }{ 3} \right)^2 \\ \frac{A}{A - x} & = \left( \frac{5 }{ 3} \right)^2 \\ \frac{A}{A - x} & = \frac{25 }{ 9} \\ 9A & = 25A - 25x \\ 25x & = 16A \\ x & = \frac{16A}{25} = 0,64A \end{align} $
Zat yang bereaksi setelah t = 40 adalah 0,64 A mol.
Zat A yang tinggal sebanyak = A mol - 0,64 A mol = 0,36A mol
Zat B dan zat C yang terbentuk masing-masing adalah 0,64 A mol.

Susunan campuran dapat ditentukan dengan cara berikut.
$ \begin{align} \text{Zat A } & = \frac{\text{jumlah mol A yang tinggal}}{\text{jumlah mol keseluruhan}} \times 100\% \\ & = \frac{0,36A \, mol }{(0,36A+0,64A+0,64A) \, mol} \times 100\% \\ & = \frac{0,36A \, mol }{1,64A \, mol} \times 100\% \\ & = 21,95\% \end{align} $
Zat B dan zat C mempunyai komposisi sama, yaitu 39,03%. Jadi, susunan campuran setelah 40 menit adalah zat A 21,95%; zat B 39,03%; dan zat C 39,03%.

b). Campuran mengandung ketiga zat dalam jumlah mol yang sama, berarti
mol A = mol B = mol C atau
$ \begin{align} (A - x) & = x \\ A & = 2x \\ x & = \frac{1}{2}A \end{align} $
Sehingga :
$ \begin{align} \ln \frac{A}{A - x} & = \left( \frac{1}{20} \ln \frac{5 }{ 3} \right) \times t \\ \ln \frac{A}{A - \frac{1}{2}A } & = \left( \frac{1}{20} \ln \frac{5 }{ 3} \right) \times t \\ \ln \frac{A}{ \frac{1}{2}A } & = \left( \frac{1}{20} \ln \frac{5 }{ 3} \right) \times t \\ \ln 2 & = \left( \frac{1}{20} \ln \frac{5 }{ 3} \right) \times t \\ \frac{t}{20} & = \frac{\ln 2}{\ln \frac{5 }{ 3} } \\ \frac{t}{20} & = \frac{\ln 2}{\ln 5 - \ln 3 } \\ \frac{t}{20} & = \frac{0,693}{1,609 - 1,098 } \\ \frac{t}{20} & = \frac{0,693}{0,511} \\ t & = \frac{0,693}{0,511} \times 20 \\ t & = 27,1 \, \text{ menit} \end{align} $
atau $ t = \, $ 27 menit 6 detik.
Jadi, campuran mengandung ketiga zat dengan jumlah mol yang sama dalam waktu 27,1 menit.

       Demikian pembahasan materi Penurunan Rumus Orde Reaksi dan contohnya.

Tidak ada komentar:

Posting Komentar

Posting Lebih Baru Posting Lama Beranda
Langganan: Posting Komentar (Atom)

meCKZINK

Memuat...

Arsip Blog

Topik

asam dan basa buffer hidrokarbon kesetimbangan kimia kimia kimia unsur laju reaksi makromolekul polimer reaksi redoks sel elektrokimia senyawa karbon soal OSN soal osp soal un termokimia unsur radioaktif

Popular Posts

  • Cara Paling Mudah Menentukan Bentuk Molekul Ion Poliatomik
    Cara menentukan bentuk molekul ion poliatomik baik anion maupun kation tidak berbeda dengan cara menentukan bentuk molekul netral. Memang pa...
  • Kelimpahan dan Kegunaan Unsur Periode Empat
    Kelimpahan dan Kegunaan Unsur Periode Empat . Kita bagi menjadi dua submateri dalam pembahasannya yaitu kelimpahan unsur dan senyawa periode...
  • Cara Menentukan Golongan Unsur Berdasarkan Energi Ionisasi
    Data energi ionisasi suatu unsur dapat digunakan untuk memperkirakan golongan unsur dalam tabel sistem periodik unsur. Berdasarkan data ener...
  • Cara Super-super Cepat Menentukan Golongan dan Periode Unsur (Trik Hanya Lima Detik)
    Ini adalah pengembangan metode super cepat menentukan golongan dan periode unsur dalam tabel periodik unsur tulisan yang lalu . Urgensinya h...
  • Teori Mekanika Kuantum Berkaitan Kimia
    Teori Mekanika Kuantum Berkaitan Kimia . Dalam fisika klasik, partikel memiliki posisi dan momentum yang jelas dan mengikuti lintasan yang ...
  • Cara Menentukan Persamaan Laju Reaksi Berdasar Mekanisme Reaksi (3)
    Pada tulisan sebelumnya telah dibahas cara menentukan persamaan laju reaksi berdasar mekanisme (1) yaitu mekanisme reaksi dengan tahap awal...
  • Kaidah Penentuan Konfigurasi Elektron
    Kaidah Penentuan Konfigurasi Elektron . Konfigurasi elektron menggambarkan susunan elektron dalam orbital-orbital atom. Dengan mengetahui ...

Navigasi

  • Home
  • disclaimer
  • sitemap
Ehcrodeh. Diberdayakan oleh Blogger.
Copyright © KMA. Template by : Petunjuk Onlene