× Home Daftar Isi Disclaimer Tentang Blog
Menu

Serba Ada

Serba Serbi

Tampilkan postingan dengan label asam dan basa. Tampilkan semua postingan
Tampilkan postingan dengan label asam dan basa. Tampilkan semua postingan
Teori Asam Basa Arhenius

Teori Asam Basa Arhenius

Add Comment
Konsep asam dan basa sudah dikenal sejak abad 18-an. Untuk pertama kalinya, pada tahun 1884 seorang ilmuwan Swiss, Svante August Arrhenius, mengemukakan suatu teori tentang asam basa. Pada tahun 1884 Svante Arrhenius menyatakan bahwa garam seperti NaCl memisahkan diri ketika larut dalam air dan menghasilkan partikel yang dinamakan ion.

         Tiga tahun kemudian Arrhenius menyatakan bahwa asam adalah molekul netral yang mengionisasi ketika larut dalam air dan memberikan ion H$^+$ dan ion negatif. Menurut teorinya, hidrogen klorida adalah asam karena dapat mengionisasi ketika larut dalam air dan memberikan ion hidrogen (H$^+$) dan klorida (Cl$^-$) seperti yang terlihat di bawah ini.

         Asam Arrhenius mencakup senyawa seperti HCl, HCN dan H$_2$SO$_4$. Arrhenius juga berpendapat bahwa basa adalah senyawa yang mengionisasi dalam air untuk memberikan ion OH$^-$ dan ion positif. NaOH adalah basa menurut Arrhenius karena dapat memisahkan diri dalam air untuk memberikan ion hidroksida (OH$^-$) dan natrium (Na$^+$).

         Teori ini menjelaskan kenapa asam memiliki sifat yang serupa. Sifat yang khas dari asam dihasilkan dari keberadaan ion H$^+$. Ini juga menjelaskan kenapa asam menetralkan basa dan sebaliknya. Asam memberikan ion H$^+$, basa memberikan ion OH$^-$, sehingga ion tersebut membentuk air.
$ H^+(aq) + OH^-(aq) \rightarrow H_2O (l) $.

         Arrhenius berpendapat bahwa dalam air, larutan asam dan basa akan mengalami penguraian menjadi ion-ionnya. Asam merupakan zat yang di dalam air dapat melepaskan ion hidrogen (H$^+$). Sedangkan basa merupakan zat yang di dalam air dapat melepaskan ion hidroksida (OH$^-$).

Teori Arrhenius memiliki beberapa kekurangan.
*). hanya dapat diaplikasikan dalam reaksi yang terjadi dalam air
*). tidak menjelaskan mengapa beberapa senyawa, yang mengandung hidrogen dengan bilangan oksidasi +1(seperti HCl) larut dalam air untuk membentuk larutan asam, sedangkan yang lain seperti CH$_4$ tidak.
*). tidak dapat menjelaskan mengapa senyawa yang tidak memiliki OH$^-$, seperti Na$_2$CO$_3$ memiliki karakteristik seperti basa.

       Demikian pembahasan materi Teori Asam Basa Arhenius. Silahkan juga baca materi lain yang berkaitan dengan Teori Asam Basa Bronsted-Lowry.
Baca selengkapnya »
Kurva Titrasi Asam Basa

Kurva Titrasi Asam Basa

Add Comment
Setelah mempelajari "titrasi asam basa", kita lanjutkan lagi pembahasan materi Kurva titrasi asam basa. Untuk menyatakan perubahan pH larutan pada saat titrasi digunakan grafik yang disebut kurva titrasi. Kurva titrasi memudahkan kita dalam menentukan titik ekuivalen. Jenis asam dan basa yang digunakan akan menentukan bentuk kurva titrasi. Berikut ini akan dibahas empat jenis kurva titrasi, yaitu:
1. Kurva titrasi asam kuat oleh basa kuat
2. Kurva titrasi basa kuat oleh asam kuat
3. Kurva titrasi asam lemah oleh basa kuat
4. Kurva titrasi basa lemah oleh asam kuat.

1. Kurva titrasi asam kuat oleh basa kuat

       Titrasi asam basa merupakan reaksi penetralan. Sebagai contoh, 25 mL larutan HCl 0,1 M dititrasi dengan larutan NaOH 0,1 M. Perhatikan kurva titrasi volume NaOH terhadap pH di bawah ini:

       Pada grafik, diperlihatkan ciri penting dari kurva titrasi NaOH - HCl bahwa pH berubah secara lambat sampai dekat titik ekuivalen. Penambahan NaOH menyebabkan harga pH naik sedikit demi sedikit. Namun, pada titik ekuivalen, pH meningkat sangat tajam kira-kira 6 unit (dari pH 4 sampai pH 10) hanya dengan penambahan 0,1 mL ($\pm$ 2 tetes). Setelah titik ekuivalen, pH berubah amat lambat jika ditambah NaOH. Indikator-indikator yang perubahan warnanya berada dalam bagian terjal kurva titrasi ini, yaitu indikator yang mempunyai trayek pH antara 4 sampai 10 cocok digunakan untuk titrasi tersebut. Indikator yang dapat digunakan pada titrasi ini adalah metil merah, brom timol biru, dan fenolftalein. Untuk titrasi asam kuat oleh basa kuat, besarnya pH saat titik ekuivalen adalah 7. Pada pH ini asam kuat tepat habis bereaksi dengan basa kuat, sehingga larutan yang terbentuk adalah garam air yang bersifat netral.

2. Kurva titrasi basa kuat oleh asam kuat

       Contoh titrasi ini adalah 40 mL larutan HCl 0,1 M dititrasi dengan larutan NaOH 0,1 M. Kurva titrasinya digambarkan sebagai berikut:

       Seperti pada titrasi asam kuat oleh basa kuat, titik ekuivalen titrasi ini pada saat penambahan HCl sebanyak 40 mL dan pH = 7. Ketiga indikator asam basa yang tertulis (fenolftalein, bromotimol biru, dan metil merah) bisa digunakan sebagai indikator dalam titrasi ini.

3. Kurva titrasi asam lemah oleh basa kuat

       Penetralan asam lemah oleh basa kuat agak berbeda dengan penetralan asam kuat oleh basa kuat. Contohnya, 25 mL CH$_3$COOH 0,1 M dititrasi oleh NaOH 0,1 M. Mula-mula sebagian besar asam lemah dalam larutan berbentuk molekul tak mengion CH$_3$COOH, bukan H$^+$ dan CH$_3$COO$^-$. Dengan basa kuat, proton dialihkan langsung dari molekul CH$_3$COOH yang tak mengion ke OH$^-$. Untuk penetralan CH$_3$COOH oleh NaOH, persamaan ion bersihnya sebagai berikut: (James E. Brady, 1990).
$ CH_3COOH(aq) + OH^-(aq) \rightarrow H_2O(l) + CH_3COO^-(aq) $
Kurva titrasi asam lemah oleh basa kuat dapat ditunjukkan pada gambar berikut:


Sifat penting yang perlu diingat pada titrasi asam lemah oleh basa kuat adalah:
a. pH awal lebih tinggi daripada kurva titrasi asam kuat oleh basa kuat (karena asam lemah hanya mengion sebagian).
b. Terdapat peningkatan pH yang agak tajam pada awal titrasi. Ion asetat yang dihasilkan dalam reaksi penetralan bertindak sebagai ion senama dan menekan pengionan asam asetat.
c. Sebelum titik ekuivalen tercapai, perubahan pH terjadi secara bertahap. Larutan yang digambarkan dalam bagian kurva ini mengandung CH$_3$COOH dan CH$_3$COO$^-$ yang cukup banyak. Larutan ini disebut larutan penyangga.
d. pH pada titik di mana asam lemah setengah dinetralkan ialah pH = pKa. Pada setengah penetralan, $[CH_3COOH] = [CH_3COO^-]$.
e. pH pada titik ekuivalen lebih besar dari 7, yaitu $\pm$ 8,9, sebagai akibat hidrolisis oleh CH$_3$COO$^-$.
f. Setelah titik ekuivalen, kurva titrasi asam lemah oleh basa kuat identik dengan kurva asam kuat oleh basa kuat. Pada keadaan ini, pH ditentukan oleh konsentrasi OH$^-$ bebas.
g. Bagian terjal dari kurva titrasi pada titik ekuivalen dalam selang pH yang sempit (dari sekitar 7 sampai 10).
h. Pemilihan indikator yang cocok untuk titrasi asam lemah oleh basa kuat lebih terbatas, yaitu indikator yang mempunyai trayek pH antara 7 sampai 10. Indikator yang dipakai adalah fenolftalein.

4. Kurva titrasi basa lemah oleh asam kuat

       Perubahan pH pada reaksi penetralan basa lemah oleh asam kuat, dalam hal ini 50 mL NH$_3$ 0,1 M dititrasi dengan HCl 0,1 M, dapat ditunjukkan pada kurva di bawah ini.

       Dari kurva tersebut, terlihat bahwa titik ekuivalen terjadi pada pH lebih kecil 7. Hal ini disebabkan garam yang terbentuk mengalami hidrolisis sebagian yang bersifat asam (pH < 7). Adapun indikator asam basa yang bisa digunakan sebagai indikator titrasi adalah metil merah dan bromotimol biru.
Baca selengkapnya »
Titrasi Asam Basa

Titrasi Asam Basa

Add Comment
Titrasi asam basa merupakan analisis kuantitatif untuk menentukan molaritas larutan asam atau basa. Zat yang akan ditentukan molaritasnya dititrasi oleh larutan yang molaritasnya diketahui (larutan baku atau larutan standar) dengan tepat dan disertai penambahan indikator. Fungsi indikator di sini untuk mengetahui titik akhir titrasi. Jika indikator yang digunakan tepat, maka indikator tersebut akan berubah warnanya pada titik akhir titrasi.

         Titrasi asam basa merupakan metode penentuan molaritasasam dengan zat penitrasi larutan basa atau penentuan molaritas larutan basa dengan zat penitrasi larutan asam. Titik akhir titrasi (pada saat indikator berubah warna) diharapkan mendekati titik ekuivalen titrasi, yaitu kondisi pada saat larutan asam tepat bereaksi dengan larutan basa.

         Pada umumnya masih dilakukan cara titrasi yang sederhana, dengan menggunakan gelas kimia, dan Biuret. Berikut adalah rangkaian alat titrasi sederhana:

         Titrasi asam basa dilakukan dengan menggunakan buret. Buret adalah alat yang digunakan untuk menambahkan standar ke dalam larutan yang akan ditentukan molaritasnya.
Berikut langkah-langkah melakukan titrasi asam basa.
1) Siapkan larutan yang akan ditentukan molaritasnya. Pipet larutan tersebut ke dalam erlenmeyer dengan menggunakan pipet volume.
2) Pilih indikator berdasarkan trayek pH dan perubahan warna indikator untuk memudahkan pengamatan. Tambahkan beberapa tetes pada larutan.
3) Tambahkan zat penitrasi setetes demi setetes dengan selalu menggoyangkan erlenmeyer agar terjadi reaksi sempurna.
4) Sesekali, pinggiran erlenmeyer dibilas agar zat yang bereaksi tidak menempel di dinding erlenmeyer.
5) Ketika mendekati titik ekuivalen, penambahan zat penitrasi dilakukan dengan sangat hati-hati. Buka kran buret, peniter yang keluar jangan sampai menetes, tetapi ditempelkan pada dinding erlenmeyer kemudian bilas dan goyangkan. Ada baiknya titrasi dilakukan sebanyak dua atau tiga kali (duplo atau triplo). Apa zat penitrasi itu? Zat penitrasi adalah zat yang ditambahkan ketika kita melakukan titrasi.
6) Hitung molaritas larutan (perhatikan contoh soal berikut).

Contoh:
Sebanyak 10 mL larutan HCl dititrasi dengan larutan NaOH 0,1 M menggunakan indikator fenolftalein. Jika perubahan warna indikator menjadi merah muda diperlukan 12,5 mL larutan penitrasi, maka tentukan molaritas larutan HCl tersebut.
Jawab:
Tuliskan persamaan reaksi yang terjadi
$ HCl(aq ) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(aq) $
Lihat perbandingan koefisien HCl dan NaOH
1 HCl ~ 1 NaOH
*). Jumlah mol HCl dapat dihitung dengan cara berikut,
$ \begin{align} n_{NaOH} & = V_{NaOH} \times M_{NaOH} \\ & = 0,0125 \, L \times 0,1 \, mol \, L^{-1} \\ & = 0,00125 \, mol \\ n_{HCl} & = \frac{1}{1} \times n_{NaOH} \\ & = 0,00125 \, mol \end{align} $
*). Molaritas HCl dapat ditentukan dengan cara berikut,
$ \begin{align} M_{HCl} & = \frac{n_{HCl}}{V_{HCl}} \\ & = \frac{0,00125 \, mol }{0,01 \, L} \\ & = 0,125 \, M \end{align} $
Jadi, molaritas HCl sebesar 0,125 M.

       Jika kita membeli asam cuka di pasar, atau di toko maka kita tidak pernah menemukan ukuran kandungan asam dalam bentuk kemolaran seperti yang kita pelajari. Namun dalam botol masih tercantum kadar cuka berupa persen volume. Untuk itu kita coba mengukur berapa konsentrasi asam cuka sehingga dapat diketahui kebenaran kandungannya

Contoh :
Untuk mengetahui % asam cuka dilakukan dengan titrasi 2mL larutan asam cuka dan memerlukan 35 mL larutan NaOH 0,1M. massa jenis larutan 950 g/L.
a. Tentukan kemolaran asam cuka!
b. Berapa % kadar asam cuka tersebut?
Jawab:
a). Menentukan kemolaran asam cuka :
$ \begin{align} V_{asam} \times M_{asam} & = V_{basa} \times M_{basa} \\ M_{asam} & = \frac{V_{basa} \times M_{basa}}{V_{asam}} \\ & = \frac{35 \times 0,1}{2} \\ & = 1,75 \, M \end{align} $
b). Dalam 1 liter larutan cuka
terdapat $ 1,75 \times 60 \, $ gram cuka = 105 gram cuka.
Berat 1 liter larutan = 950 gram.
Maka kadar asam cuka
$ = \frac{105}{950} \times 100\% = 11,05 \% $.

       Pada saat titrasi, kita menemukan titik akhir titrasi. Pada titik akhir titrasi ini jumlah mol ekivalen antara zat yang dititrasi dan penitrasi sama dan ditunjukkan dengan perubahan warna indikator asam basa, setelah diketahui volumenya kita dapat melakukan perhitungan.

Contoh :
Larutan HCl 0,3M dititrasi dengan larutan NaOH. Ternyata titik akhir titrasi tercapai bila 10 mL larutan HCl memerlukan 75 mL larutan NaOH. Tentukan kemolaran larutan NaOH!
Jawab:
$ \begin{align} V_{asam} \times M_{asam} & = V_{basa} \times M_{basa} \\ M_{basa} & = \frac{V_{asam} \times M_{asam}}{V_{basa}} \\ & = \frac{10 \times0,3}{75} \\ & = 0,04 \, M \end{align} $

       Pemilihan indikator yang tepat merupakan syarat utama saat titrasi. Jika indikator yang digunakan berubah warna pada saat titik ekuivalen, maka titik akhir titrasi akan sama dengan titik ekuivalen. Akan tetapi, jika perubahan warna indikator terletak pada pH di mana zat penitrasi sedikit berlebih, maka titik akhir titrasi berbeda dengan titik ekuivalen.

       Demikian pembahasan materi Titrasi Asam Basa dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan Kurva Titrasi Asam Basa.
Baca selengkapnya »
Kekuatan Asam dan Basa

Kekuatan Asam dan Basa

Add Comment
Materi berikut ini yang akan kita bahas adalah tentang Kekuatan Asam dan Basa. Sebagaimana larutan elektrolit yang dibedakan atas elektrolit kuat dan elektrolit lemah, maka larutan asam dan larutan basa yang merupakan larutan elektrolit juga dibedakan atas asam-basa kuat dan asam-basa lemah. Perbedaan kekuatan larutan asam-basa ini dipengaruhi oleh banyak sedikitnya ion-ion pembawa sifat asam dan ion-ion pembawa sifat basa yang dihasilkan saat terionisasi.

Kekuatan Asam
       Kekuatan asam dipengaruhi oleh banyaknya ion - ion H$^+$ yang dihasilkan oleh senyawa asam dalam larutannya. Berdasarkan banyak sedikitnya ion H+ yang dihasilkan, larutan asam dibedakan menjadi dua macam yaitu asam kuat dan asam lemah.
       Asam kuat yaitu senyawa asam yang dalam larutannya terion seluruhnya menjadi ion-ionnya. Reaksi ionisasi asam kuat merupakan reaksi berkesudahan. Secara umum, ionisasi asam kuat dirumuskan sebagai berikut:
$ HA(aq) \rightarrow H^+(aq) + A^-(aq) $
$ [H^+] = x . [HA] $
atau
$ [H^+] = $ valensi asam $ \, . M $.

Keterangan :
$ x = \, $ valensi asam
$ M = \, $ konsentrasi asam.

       Asam lemah yaitu senyawa asam yang dalam larutannya hanya sedikit terionisasi menjadi ion-ionnya. Reaksi ionisasi asam lemah merupakan reaksi kesetimbangan. Secara umum, ionisasi asam lemah valensi satu dapat dirumuskan sebagai berikut.
$ HA(aq) \rightleftharpoons H^+(aq) + A^-(aq) $
$\begin{align} K_a = \frac{[H^+][A^-]}{[HA]} \end{align} $

       Makin kuat asam maka reaksi kesetimbangan asam makin condong ke kanan, akibatnya $K_a$ bertambah besar. Oleh karena itu, harga $K_a$ merupakan ukuran kekuatan asam, makin besar $K_a$ makin kuat asam.
Berdasarkan persamaan di atas, karena pada asam lemah $[H^+] = [A^-]$, maka persamaan di atas dapat diubah menjadi:
$\begin{align} K_a & = \frac{[H^+][A^-]}{[HA]} \\ K_a & = \frac{[H^+][H^+]}{[HA]} \\ K_a & = \frac{[H^+]^2}{[HA]} \\ [H^+]^2 & = K_a . [HA] \\ [H^+] & = \sqrt{K_a . [HA]} \end{align} $
dengan $K_a = \, $ tetapan ionisasi asam.
Konsentrasi ion H$^+$ asam lemah juga dapat dihitung jika derajat ionisasinya ($\alpha$) diketahui.
$ [H^+] = [HA]. \alpha $ .

Contoh soal kekuatan asam :
Tentukan konsentrasi ion H+ dalam masing-masing larutan berikut.
a. H$_2$SO$_4$ 0,02 M
b. HNO$_3$ 0,1 M
c. CH$_3$COOH 0,05 M jika derajat ionisasinya 1%
d. H$_2$SO$_3$ 0,001 M jika $K_a = 1 \times 10^{-5}$.

Penyelesaian :
Petunjuk: H$_2$SO$_4$ dan HNO$_3$ merupakan asam kuat, sedangkan CH$_3$COOH dan H$_2$SO$_3$ termasuk asam lemah.
a). Reaksinya : $ H_2SO_4 \rightarrow 2H^+ + SO_4^{2-} $
$ \begin{align} [H^+] & = x . [HA] \\ & = 2 \times 0,02 \\ & = 0,04 \, M \end{align} $
b). Reaksinya : $ HNO_3 \rightarrow H^+ + NO_3^{-} $
$ \begin{align} [H^+] & = x . [HA] \\ & = 1 \times 0,1 \\ & = 0,1 \, M \end{align} $
c). Reaksinya : $ CH_3COOH \rightleftharpoons CH_3COO^- + H^+ $
$ \begin{align} [H^+] & = [HA] . \alpha \\ & = 0,05 \times 1\% \\ & = 0,05 \times 0,01 \\ & = 0,0005 \, M \end{align} $
d). Reaksinya : $ H_2SO3 \rightleftharpoons 2H^+ + SO_3^{2-} $
$ \begin{align} [H^+] & = \sqrt{K_a \times [HA]} \\ & = \sqrt{10^{-5} \times 0,001} \\ & = \sqrt{10^{-5} \times 10^{-3}} \\ & = \sqrt{10^{-8} } \\ & = 10^{-4} \, M \end{align} $

Kekuatan Basa
       Kekuatan basa dipengaruhi oleh banyaknya ion-ion OH$^-$ yang dihasilkan oleh senyawa basa dalam larutannya. Berdasarkan banyak sedikitnya ion OH$^-$ yang dihasilkan, larutan basa juga dibedakan menjadi dua macam yaitu basa kuat dan basa lemah.
       Basa kuat yaitu senyawa basa yang dalam larutannya terion seluruhnya menjadi ion-ionnya. Reaksi ionisasi basa kuat merupakan reaksi berkesudahan.
Secara umum, ionisasi basa kuat dirumuskan sebagai berikut:
$M(OH)_x(aq) \rightarrow M^{x+}(aq) + xOH^-(aq) $
$[OH^-] = x . [M(OH)_x] $
atau
$ [OH^-] = \, $ valensi basa $ \, . M $

Keterangan :
$x = \, $ valensi basa
$ M = \, $ konsentrasi basa

       Basa lemah yaitu senyawa basa yang dalam larutannya hanya sedikit terionisasi menjadi ion-ionnya. Reaksi ionisasi basa lemah juga merupakan reaksi kesetimbangan. Secara umum, ionisasi basa lemah valensi satu dapat dirumuskan sebagai berikut:
$M(OH)(aq) \rightleftharpoons M^{+}(aq) + OH^-(aq) $
$ \begin{align} K_b = \frac{[M^+][OH^-]}{[M(OH)]} \end{align} $

Makin kuat basa maka reaksi kesetimbangan basa makin condong ke kanan, akibatnya $K_b$ bertambah besar. Oleh karena itu, harga $K_b$ merupakan ukuran kekuatan basa, makin besar $K_b$ makin kuat basa.
Berdasarkan persamaan di atas, karena pada basa lemah $[M^+] = [OH^-]$, maka persamaan di atas dapat diubah menjadi:
$ \begin{align} K_b & = \frac{[M^+][OH^-]}{[M(OH)]} \\ K_b & = \frac{[OH^-][OH^-]}{[M(OH)]} \\ K_b & = \frac{[OH^-]^2}{[M(OH)]} \\ [OH^-]^2 & = K_b \times [M(OH)] \\ [OH^-] & = \sqrt{K_b \times [M(OH)]} \end{align} $
dengan $ K_b = \, $ tetapan ionisasi basa

Konsentrasi ion OH$^-$ basa lemah juga dapat dihitung jika derajat ionisasinya ($\alpha$) diketahui.
$ [OH^-] = [M(OH)] \times \alpha $ .

Contoh soal kekuatan basa :
Tentukan konsentrasi ion OH$^-$ masing-masing larutan berikut.
a. Ca(OH)$_2$ 0,02 M
b. KOH 0,004 M
c. Al(OH)$_3$ 0,1 M jika $K_b = 2,5 \times 10^{-6} $
d. NH$_4$OH 0,01 M jika terion sebanyak 5%

Jawab:
Petunjuk: Ca(OH)$_2$ dan KOH merupakan basa kuat, sedangkan Al(OH)3 dan NH$_4$OH termasuk basa lemah.
a). Reaksinya : $ Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^- $
$ \begin{align} [OH^-] & = x . [M(OH)] \\ & = 2 \times 0,02 \\ & = 0,04 \, M \end{align} $
b). Reaksinya : $ KOH \rightarrow K^+ + OH^- $
$ \begin{align} [OH^-] & = x . [M(OH)] \\ & = 1 \times 0,004 \\ & = 0,004 \, M \end{align} $
c). Reaksinya : $ Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^- $
$ \begin{align} [OH^-] & = \sqrt{K_b . [M(OH)] } \\ & = \sqrt{2,5 \times 10^{-6} . 0,1 } \\ & = \sqrt{25 \times 10^{-8} } \\ & = 5 \times 10^{-4} \, M \end{align} $
d). Reaksinya : $ NH_4OH \rightleftharpoons NH_4^+ + OH^- $
$ \begin{align} [OH^-] & = [M(OH)] \times \alpha \\ & = 0,01 \times 5\% \\ & = 0,01 \times 0,05 \\ & = 0,0005 \, M \end{align} $



Baca selengkapnya »
Tetapan Kesetimbangan Air

Tetapan Kesetimbangan Air

Add Comment
Pada artikel ini kita akan membahas materi Tetapan Kesetimbangan Air ($K_w$). Air murni hampir tidak menghantarkan arus listrik. Hanya alat pengukuran yang sangat peka yang dapat menunjukkan bahwa air murni memiliki daya hantar listrik yang sangat kecil. Artinya, hanya sebagian kecil molekul-molekul air dapat terionisasi menjadi ion H$^+$ dan ion OH$^-$. Persamaan ionisasi air dapat ditulis sebagai:
$H_2O(l) \rightleftharpoons H^+ (aq) + OH^- (aq) $

Harga tetapan air adalah:
$ \begin{align} K & = \frac{[H^+][OH^-]}{[H_2O]} \\ K [H_2O] & = [H^+][OH^-] \end{align} $
Konsentrasi H$_2$O yang terionisasi menjadi H$^+$ dan OH$^-$ sangat kecil dibandingkan dengan konsentrasi H$4_2$O mula-mula, sehingga konsentrasi H$_2$O dapat dianggap tetap, maka harga K[H$_2$O] juga tetap, yang disebut tetapan kesetimbangan air atau ditulis $K_w$. Jadi,
$ \begin{align} K_w & = [H^+][OH^-] \end{align} $
Pada suhu 25 $^\circ$C, $K_w$ yang didapat dari percobaan adalah 1,0 $\times 10^{-14}$. Harga $K_w$ ini tergantung pada suhu, tetapi untuk percobaan yang suhunya tidak terlalu menyimpang jauh dari 25 $^\circ$C, harga $K_w$ itu dapat dianggap tetap.

Harga $K_w$ pada berbagai suhu dapat dilihat pada tabel berikut.
$K_w = [H^+][OH^-] = 10^{-14}$.
Oleh karena $[H^+][OH^-] = 10^{-14}$, maka $[H^+]= 10^{-7}$ dan $[OH^-] = 10^{-7}$. Artinya, dalam 1 liter air murni terkandung ion H$^+$ dan ion OH$^-$ masing-masing sebanyak $10^{-7}$ mol.

       Jika ke dalam air ditambahkan suatu asam, maka [H$^+$] akan bertambah tetapi hasil perkalian [H$^+$][OH$^-$] tetap sama dengan $K_w$. Hal ini dapat terjadi karena kesetimbangan bergeser ke kiri yang menyebabkan pengurangan [OH$^-$]. Kesetimbangan juga akan bergeser jika ke dalam air ditambahkan suatu basa. Dari pembahasan ini dapat disimpulkan sebagai berikut:


       Demikian pembahasan materi Tetapan Kesetimbangan Air ($K_w$) dan contohnya. Silahkan juga baca materi lain yang berkaitan dengan Kekuatan Asam dan Basa.
Baca selengkapnya »
Derajat Dissosiasi Asam Basa

Derajat Dissosiasi Asam Basa

Add Comment
Kita lanjutkan pembahasan asam basa yaitu tentang Derajat Dissosiasi ($\alpha$) Asam Basa. Dalam larutan elektrolit kuat, zat-zat elektrolit terurai seluruhnya menjadi ion-ionnya (ionisasi sempurna) dan dalam larutan elektrolit lemah, zat-zat elektrolit hanya sebagian saja yang terurai menjadi ion-ionnya (ionisasi sebagian). Sedangkan zat-zat nonelektrolit dalam larutan tidak terurai menjadi ion-ion.

Berikut ini, beberapa contoh reaksi ionisasi untuk elektrolit kuat.
$HCl + H2O \rightarrow H_3O^+(aq) + Cl^-(aq) $
$H_2SO_4 + H_2O \rightarrow 2H_3O^+(aq) + SO_4^{2-} (aq)$
$NaOH + H_2O \rightarrow Na^+(aq) + OH^- (aq) $
$ Ca(OH)_2 + H_2O \rightarrow Ca^{2+}(aq) + 2OH^-(aq)$

       Jumlah zat elektrolit yang terionisasi dibandingkan dengan jumlah zat semula dapat dinyatakan dengan derajat disosiasi ($\alpha$) dan ditulis dengan rumus berikut ini. Berdasarkan rumus, maka nilai $\alpha$ untuk:

Keterangan nilai $ \alpha $ :
1. Elektrolit kuat, $ \alpha = 1 $
2. Elektrolit lemah, $ 0 < \alpha < 1 $
3. Non-elektrolit, $ \alpha = 0 $

       Suatu asam atau basa yang merupakan suatu elektrolit kuat disebut asam atau basa kuat. Dengan demikian jika asam merupakan elektrolit lemah, maka ia merupakan asam lemah, karena hanya mengandung sedikit ion H$^+$, demikian juga dengan basa lemah akan terdapat sedikit ion -OH.

       Demikian pembahasan materi Derajat Dissosiasi ($\alpha$) Asam Basa . Silahkan juga baca materi lain yang berkaitan dengan Tetapan Kesetimbangan Air ($K_w$).
Baca selengkapnya »
Indikator Asam Basa

Indikator Asam Basa

Add Comment
Pada artikel ini kita akan membahas materi Indikator Asam Basa. Jika kita ingin mengetahui apakah suatu senyawa bersifat asam, basa atau bahkan tidak keduanya cara yang paling mudah dan murah adalah dengan kertas lakmus. Apa itu lakmus? Lakmus berasal dari kata litmus yaitu sejenis tanaman yang dapat menghasilkan warna jika ada asam atau basa. Lakmus merupakan asam lemah, dan biasa ditulis sebagai Hlit. Ketika dalam air terbentuk :
$ HLit(aq) \rightarrow H^+ (aq) + Lit^- (aq) $

         Ketika berbentuk Hlit, berwarna merah dan ketika berbentuk ion berwarna biru. Untuk mengetahui bagaimana reaksinya ketika ada asam atau basa, maka kita gunakan asas Le Chatelier. Penambahan ion hidroksida (basa) :
Gambar: perubahan warna lakmus oleh basa

Penambahan ion hydrogen atau asam,
Gambar: perubahan warna lakmus oleh asam

         Namun kekuatan asam atau basa tidak dapat ditunjukkan oleh lakmus. Maka digunakan beberapa indikator lain yang memiliki perubahan warna berbeda jika pH atau kekuatan asamnya berbeda, misalnya methyl orange (metil jingga) yang akan berwarna kuning jika pH lebih besar dari 4,4 sehingga dapat mendeteksi asam lemah dan asam kuat dan fenolftalein yang berwarna merah jika ada basa kuat. Trayek pH beberapa indikator diantaranya :

Contoh Soal:
Suatu senyawa ketika dicoba dengan beberapa indikator pH menunjukkan data sebagai berikut, Fenolftalein tak berwarna, metil jingga berwarna kuning, phenol red kuning, metil merah kuning. Tentukanlah berapa perkiraan pH larutan tersebut.
Jawab:

       Penggunaan beberapa buah indikator untuk mengetahui pH satu jenis larutan dinilai kurang efektif, karena banyaknya zat, memerlukan biaya cukup mahal untuk diidentifikasi keasamannya. Untuk itu dibuatlah indikator universal, yang secara praktis menunjukkan warna tertentu untuk nilai pH tertentu. Indikator ini pun dapat dibuat dalam bentuk lembaran kertas yang efisien.

       Demikian pembahasan materi Indikator Asam Basa dan contohnya. Silahkan juga baca materi lain yang berkaitan dengan Derajat Dissosiasi ($\alpha$) Asam Basa.
Baca selengkapnya »
Postingan Lama Beranda
Langganan: Postingan (Atom)

meCKZINK

Memuat...

Arsip Blog

Topik

asam dan basa buffer hidrokarbon kesetimbangan kimia kimia kimia unsur laju reaksi makromolekul polimer reaksi redoks sel elektrokimia senyawa karbon soal OSN soal osp soal un termokimia unsur radioaktif

Popular Posts

  • Bilangan Oksidasi S pada H2S2O3, H2SO5, H2S2O6, H2S2O8, H2S4O6
    Bilangan oksidasi (biloks) atom belerang (S) pada beberapa molekul tertentu agak sedikit berbeda cara penentuannya. Ketentuan atau aturan pe...
  • Soal Laju Reaksi Dekomposisi dan Pembahasannya
    Soal #1 Dekomposisi dinitrogen pentaoksida (N 2 O 5 ) menjadi NO 2 dan O 2 adalah reaksi orde pertama. Pada temperatur 60 o C konstanta la...
  • Kaidah Penentuan Konfigurasi Elektron
    Kaidah Penentuan Konfigurasi Elektron . Konfigurasi elektron menggambarkan susunan elektron dalam orbital-orbital atom. Dengan mengetahui ...
  • Bilangan Kuantum
     Perpindahan elektron dari satu lintasan ke lintasan lain menghasilkan spektrum unsur berupa spektrum garis. Apabila dilihat lebih teliti, t...
  • Pereaksi Pembatas pada Reaksi Basa Kuat + Asam Kuat
    Pereaksi pembatas dapat dimaknai sebagai pereaksi yang habis saat akhir reaksi (jumlahnya terbatas), tidak bersisa. Pada bahasan larutan bas...
  • Soal tentang Persentase Rendemen pada Bahasan Kimia SMA
    Pada tulisan ini akan disajikan beberapa contoh soal-soal yang berhubungan dengan rendemen zat dari hasil reaksi kimia, akan dilakukan pemut...
  • Penamaan Isomer Sistem Z/E pada Alkena
    Mengingat kembali sistem penamaan Z/E pada isomer alkena dengan menggunakan contoh. Dimulai dari yang sederhana ke yang relatif lebih rumit....

Navigasi

  • Home
  • disclaimer
  • sitemap
Ehcrodeh. Diberdayakan oleh Blogger.
Copyright © KMA. Template by : Petunjuk Onlene