× Home Daftar Isi Disclaimer Tentang Blog
Menu

Serba Ada

Serba Serbi

Kecepatan Peluruhan dan Waktu Paruh

Materi: unsur radioaktif
Kecepatan Peluruhan dan Waktu Paruh. Telah kita pelajari bersama bahwa nuklida yang tidak stabil akan mengalami peluruhan menjadi nuklida yang lebih stabil. Kecepatan peluruhan tiap nuklida berbeda-beda tergantung jenis nuklidanya. Bila ditinjau dari segi orde reaksi, peluruhan nuklida radioaktif mengikuti reaksi orde satu. Hal ini dapat kita gambarkan sebagai berikut:

Bila $N$ adalah jumlah zat radioaktif pada waktu $t$, maka jumlah yang terurai tiap satuan waktu dapat dinyatakan dengan persamaan diferensial, yaitu:
$ \begin{align} -\frac{dN}{dt} = \lambda N \end{align} $ ,
dimana :
$ \lambda = \, $ tetapan peluruhan, yang besarnya tergantung jenis zat radioaktif. Bila persamaan di atas di integrlakan, maka akan menjadi :
$ \begin{align} -\frac{dN}{dt} & = \lambda N \\ -\frac{1}{N} dN & = \lambda dt \\ \int \limits_{N_0}^N \, -\frac{1}{N} dN & = \int \limits_0^t \, \lambda dt \\ -[\ln N]_{N_0}^N & = [\lambda t ]_0^t \\ -( \ln N - \ln N_0) & = [\lambda t ] - [\lambda . 0 ] \\ -\ln \frac{N}{N_0} & = \lambda t \\ \ln \frac{N}{N_0} & = - \lambda t \\ \frac{N}{N_0} & = e^{- \lambda t } \\ N & = N_0e^{- \lambda t } \end{align} $ ,
dengan $ N_0 = \, $ jumlah zat radioaktif pada saat $ t = 0 \, $ (mula-mula).
Jadi, kita peroleh rumus : $ \begin{align} N = N_0 \times e^{- \lambda t } \end{align} $

Pada gambar di atas tampak bahwa setelah waktu $ t $ jumlah zat radioaktif menjadi $\frac{1}{2} $ dari jumlah semula. Dalam hal ini kita mengenal waktu yang diperlukan oleh zat radioaktif untuk meluruh menjadi separuh (setengah) dari jumlah semula, yang dikenal dengan waktu paruh $(t\frac{1}{2})$. Jadi, pada saat $t = t\frac{1}{2}$ , maka $N = \frac{1}{2}N_0$ , sehingga:
$\begin{align} -\ln \frac{N}{N_0} & = \lambda t \\ \ln \left( \frac{N}{N_0} \right)^{-1} & = \lambda t \\ \ln \frac{N_0}{N} & = \lambda t \\ \ln \frac{N_0}{\frac{1}{2}N_0} & = \lambda t\frac{1}{2} \\ \ln 2 & = \lambda t\frac{1}{2} \\ 0,693 & = \lambda t\frac{1}{2} \\ t\frac{1}{2} & = \frac{0,693}{ \lambda } \end{align} $
Artinya waktu paruh bisa dihitung dengan rumus : $ t\frac{1}{2} = \frac{0,693}{ \lambda } $

Bila jumlah zat radioaktif mulamula = $N_0$ dan waktu paruh = $t\frac{1}{2}$ , maka setelah waktu paruh pertama jumlah zat radioaktif tinggal $\frac{1}{2}N_0 \, $ dan setelah waktu paruh kedua tinggal $\frac{1}{4}N_0$. Setelah zat radioaktif meluruh selama waktu $t$, maka zat radioaktif yang tinggal ($N$), dapat dirumuskan dengan:

Contoh soal :
Suatu zat radioaktif X sebanyak 12,8 gram dan memiliki waktu paruh 2 tahun. Berapa gram zat radioaktif X yang tersisa setelah 6 tahun?
Jawab:
Diketahui: $N_0 = 12,8$ gram, $t\frac{1}{2} = 2 $ tahun, $t = 6$ tahun
Ditanyakan: $N = ... ?$
$ \begin{align} N & = \left( \frac{1}{2} \right)^\frac{t}{t\frac{1}{2}} N_0 \\ & = \left( \frac{1}{2} \right)^\frac{6}{2} \times 12,8 \\ & = \left( \frac{1}{2} \right)^3 \times 12,8 \\ & = \frac{1}{8} \times 12,8 \\ & = 1,6 \end{align} $
Jadi, zat radioaktif X yang tersisa setelah 6 tahun adalah sebesar 1,6 gram.

Demikian pembahasan materi Kecepatan Peluruhan dan Waktu Paruh dan contohnya.

Tidak ada komentar:

Posting Komentar

Posting Lebih Baru Posting Lama Beranda
Langganan: Posting Komentar (Atom)

meCKZINK

Memuat...

Arsip Blog

Topik

asam dan basa buffer hidrokarbon kesetimbangan kimia kimia kimia unsur laju reaksi makromolekul polimer reaksi redoks sel elektrokimia senyawa karbon soal OSN soal osp soal un termokimia unsur radioaktif

Popular Posts

  • Membuat Persamaan Reaksi Organik Menggunakan Chemsketch
    Aplikasi: Chemsketch Level Tutorial: Pemula Berikut ini tutorial contoh membuat persamaan reaksi yang menggunakan rumus struktur benzena y...
  • Hasil Kali Kelarutan (Ksp)
    Hasil Kali Kelarutan (Ksp) . Senyawa ion yang terlarut dalam air akan terurai menjadi ion positif dan ion negatif. Jika dalam larutan jenuh...
  • Menentukan Entalpi Reaksi Berdasarkan Entalpi Pembentukan
    Penentuan Entalpi Reaksi Berdasarkan Entalpi Pembentukan . Perhitungan $\Delta$H reaksi juga dapat dilakukan dengan cara menggunakan data da...
  • Menggambar Struktur Polimer dengan Chemsketch
    Bahasan tentang polimer pada materi kimia kelas 12 diperlukan kemampuan membuat gambar polimer bagi guru ketika hendak membuat soal atau bah...
  • Hubungan Ksp, Kf, dan K pada Reaksi Pembentukan Ion Kompleks
    Tulisan ini terinspirasi ketika saya menyelesaikan pembahasan soal KSM Kimia tingkat provinsi tahun 2013. Ada soal menarik yang tentu saja d...
  • Pembahasan Soal tentang Hubungan Ksp, Kf, dan K pada Pembentukan Ion Kompleks
    Soal: Dalam fotografi, padatan AgBr yang tersisa dilarutkan dalam larutan Na 2 S 2 O 3 . Ion Ag + bereaksi dengan ion S 2 O 3 membentuk se...
  • Alternatif Cara dan Langkah Menyetarakan Reaksi Redoks
    Sejak dahulu pokok bahasan reaksi redoks khususnya tentang menyetarakan zat-zat dalam reaksi redoks menjadi hal yang sulit bagi kebanyakan s...

Navigasi

  • Home
  • disclaimer
  • sitemap
Ehcrodeh. Diberdayakan oleh Blogger.
Copyright © KMA. Template by : Petunjuk Onlene