× Home Daftar Isi Disclaimer Tentang Blog
Menu

Serba Ada

Serba Serbi

Kecepatan Peluruhan dan Waktu Paruh

Materi: unsur radioaktif
Kecepatan Peluruhan dan Waktu Paruh. Telah kita pelajari bersama bahwa nuklida yang tidak stabil akan mengalami peluruhan menjadi nuklida yang lebih stabil. Kecepatan peluruhan tiap nuklida berbeda-beda tergantung jenis nuklidanya. Bila ditinjau dari segi orde reaksi, peluruhan nuklida radioaktif mengikuti reaksi orde satu. Hal ini dapat kita gambarkan sebagai berikut:

Bila $N$ adalah jumlah zat radioaktif pada waktu $t$, maka jumlah yang terurai tiap satuan waktu dapat dinyatakan dengan persamaan diferensial, yaitu:
$ \begin{align} -\frac{dN}{dt} = \lambda N \end{align} $ ,
dimana :
$ \lambda = \, $ tetapan peluruhan, yang besarnya tergantung jenis zat radioaktif. Bila persamaan di atas di integrlakan, maka akan menjadi :
$ \begin{align} -\frac{dN}{dt} & = \lambda N \\ -\frac{1}{N} dN & = \lambda dt \\ \int \limits_{N_0}^N \, -\frac{1}{N} dN & = \int \limits_0^t \, \lambda dt \\ -[\ln N]_{N_0}^N & = [\lambda t ]_0^t \\ -( \ln N - \ln N_0) & = [\lambda t ] - [\lambda . 0 ] \\ -\ln \frac{N}{N_0} & = \lambda t \\ \ln \frac{N}{N_0} & = - \lambda t \\ \frac{N}{N_0} & = e^{- \lambda t } \\ N & = N_0e^{- \lambda t } \end{align} $ ,
dengan $ N_0 = \, $ jumlah zat radioaktif pada saat $ t = 0 \, $ (mula-mula).
Jadi, kita peroleh rumus : $ \begin{align} N = N_0 \times e^{- \lambda t } \end{align} $

Pada gambar di atas tampak bahwa setelah waktu $ t $ jumlah zat radioaktif menjadi $\frac{1}{2} $ dari jumlah semula. Dalam hal ini kita mengenal waktu yang diperlukan oleh zat radioaktif untuk meluruh menjadi separuh (setengah) dari jumlah semula, yang dikenal dengan waktu paruh $(t\frac{1}{2})$. Jadi, pada saat $t = t\frac{1}{2}$ , maka $N = \frac{1}{2}N_0$ , sehingga:
$\begin{align} -\ln \frac{N}{N_0} & = \lambda t \\ \ln \left( \frac{N}{N_0} \right)^{-1} & = \lambda t \\ \ln \frac{N_0}{N} & = \lambda t \\ \ln \frac{N_0}{\frac{1}{2}N_0} & = \lambda t\frac{1}{2} \\ \ln 2 & = \lambda t\frac{1}{2} \\ 0,693 & = \lambda t\frac{1}{2} \\ t\frac{1}{2} & = \frac{0,693}{ \lambda } \end{align} $
Artinya waktu paruh bisa dihitung dengan rumus : $ t\frac{1}{2} = \frac{0,693}{ \lambda } $

Bila jumlah zat radioaktif mulamula = $N_0$ dan waktu paruh = $t\frac{1}{2}$ , maka setelah waktu paruh pertama jumlah zat radioaktif tinggal $\frac{1}{2}N_0 \, $ dan setelah waktu paruh kedua tinggal $\frac{1}{4}N_0$. Setelah zat radioaktif meluruh selama waktu $t$, maka zat radioaktif yang tinggal ($N$), dapat dirumuskan dengan:

Contoh soal :
Suatu zat radioaktif X sebanyak 12,8 gram dan memiliki waktu paruh 2 tahun. Berapa gram zat radioaktif X yang tersisa setelah 6 tahun?
Jawab:
Diketahui: $N_0 = 12,8$ gram, $t\frac{1}{2} = 2 $ tahun, $t = 6$ tahun
Ditanyakan: $N = ... ?$
$ \begin{align} N & = \left( \frac{1}{2} \right)^\frac{t}{t\frac{1}{2}} N_0 \\ & = \left( \frac{1}{2} \right)^\frac{6}{2} \times 12,8 \\ & = \left( \frac{1}{2} \right)^3 \times 12,8 \\ & = \frac{1}{8} \times 12,8 \\ & = 1,6 \end{align} $
Jadi, zat radioaktif X yang tersisa setelah 6 tahun adalah sebesar 1,6 gram.

Demikian pembahasan materi Kecepatan Peluruhan dan Waktu Paruh dan contohnya.

Tidak ada komentar:

Posting Komentar

Posting Lebih Baru Posting Lama Beranda
Langganan: Posting Komentar (Atom)

meCKZINK

Memuat...

Arsip Blog

Topik

asam dan basa buffer hidrokarbon kesetimbangan kimia kimia kimia unsur laju reaksi makromolekul polimer reaksi redoks sel elektrokimia senyawa karbon soal OSN soal osp soal un termokimia unsur radioaktif

Popular Posts

  • Penyetaraan Reaksi Redoks: KI + H2SO4 → K2SO4 + I2 + H2S + H2O
    Berikut ini penyelesaian tiga metode penyetaraan reaksi redoks KI + H 2 SO 4  → K 2 SO 4  + I 2  + H 2 S + H 2 O Proses penyetaraan setiap m...
  • Penamaan Alkana dengan Cabang Alkil Berjarak Sama dari Ujung Rantai Utama
    Berikut ini contoh penerapan aturan IUPAC terbaru untuk penamaan (nomenclature) senyawa organik. Pada tulisan ini dikhususkan pada bahasan g...
  • Struktur Senyawa Hidrokarbon Alkana Model Skeletal
    Ada dua cara menggambarkan struktur molekul senyawa hidrokarbon yang diketahui rumus kimianya. Penggambaran dapat dilakukan dengan cara manu...
  • Penyetaraan Reaksi Redoks: P2I4 + P4 + H2O → PH4I + H3PO4
    Persamaan reaksi redoks P 2 I 4 + P 4 + H 2 O → PH 4 I + H 3 PO 4 ini nampaknya sederhana namun proses penyetaraannya dengan metode yang ...
  • Cara Menentukan Harga Entalpi Reaksi
    Penentuan Harga Entalpi Reaksi . Perubahan $\Delta$H reaksi dapat ditentukan dengan beberapa cara, yakni dari hasil eksperimen, dari penera...
  • Golongan Halogen atau Unsur Golongan VIIA
    Unsur yang termasuk  golongan halogen atau golongan VIIA adalah fluor (F), klor (Cl), brom (Br), iod (I), dan astat (As). Astat ditemukan...
  • Contoh Soal Diagram Latimer dan Penentuan Potensial Reduksi Standar
    Beberapa soal terkait penentuan potensial reduksi standar dapat ditentukan dengan beberapa cara. Salah satu caranya adalah menggunakan diagr...

Navigasi

  • Home
  • disclaimer
  • sitemap
Ehcrodeh. Diberdayakan oleh Blogger.
Copyright © KMA. Template by : Petunjuk Onlene