× Home Daftar Isi Disclaimer Tentang Blog
Menu

Serba Ada

Serba Serbi

Hibridisasi Molekul dengan Jumlah Elektron Ganjil

Materi: kimia
Ada beberapa trik dalam menentukan hibridisasi (orbital hibrida) dari suatu molekul atau ion yang pernah dibahas pada blog ini. Cara atau trik-trik sebelumnya kurang dapat mengakomodasi kasus molekul atau ion yang memiliki total elektron valensi ganjil.

Lalu bagaimana caranya? Apakah elektron tunggal pada atom pusat itu terlibat dalam pembentukan orbital hibrida?


Beberapa ketentuan yang dapat dijadikan patokan: Bila atom sekitar memiliki keelektronegatifan 2,80 skala Pauling, maka elektron tunggal itu akan turut serta dalam pembentukan orbital hibrida. Bila atom sekitar keelektronegatifannya kurang dari 2,80 maka elektron tunggal tersebut tidak terlibat/tidak berpartisipasi dalam pembentukan orbital hibrida. Unsur-unsur yang memiliki keelektronegatifan lebih dari 2,80:

Unsur Keelektronegatifan
Skala Pauling
F 3,98
O 3,44
Cl 3,16
N 3,04
Br 2,96
H 2,20

Contoh Penentuan Orbital Hibrida:

NO
Jumlah elektron valensi N + O = (5 + 6) = 11;
11/8 = 1, bermakna 1 ikatan dan sisa 3;
3/2 = 1, bermakna 1 PEB dan sisa 1 elektron berupa radikal bebas.
→ O punya keelektronegatifan = 3,44. 3,44 > 2,80. maka sisa 1 elektron itu turut terlibat dalam pembentukan orbital hibrida seolah seperti PEB.
Jumlah orbital = 1 + 1 + 1 = 3 orbital → sp2.
Geometri elektronnya segitiga datar, dan geometri molekulnya bentuk bengkok.

NO2:
Jumlah elektron valensi N + 2.O = (5 + 2.6) = 17;
17/8 = 2, bermakna 2 ikatan, sisa 1 elektron berupa radikal bebas;
→ O punya keelektronegatifan = 3,44. 3,44 > 2,80. maka sisa 1 elektron itu turut terlibat dalam pembentukan orbital hibrida seolah seperti PEB.
Jumlah orbital = 2 + 1 = 3, bermakna 3 orbital → sp2.
Geometri elektronnya segitiga datar, dan geometri molekulnya juga segitiga datar.

CH3:
Jumlah elektron valensi C + 3.H = (4 + 3.7) = 25;
Catatan elektron valensi dianggap 7 agar mudah dibagi 8.
25/8 = 3, bermakna 3 ikatan, sisa 1;
sisa 1 elektron berupa radikal bebas.
→ H punya keelektronegatifan = 2,20. 2,20 < 2,80. maka sisa 1 elektron itu tidak turut terlibat dalam pembentukan orbital hibrida dianggap tidak ada.
Jumlah orbital = 3, bermakna 3 orbital → sp2.
Geometri elektronnya segitiga datar, dan geometri molekulnya juga segitiga datar.

CF3:
Jumlah elektron valensi C + 3.F = (4 + 3.7) = 25;
25/8 = 3, bermakna 3 ikatan, sisa 1;
sisa 1 elektron berupa radikal bebas.
→ F punya keelektronegatifan = 3,98. 3,98 > 2,80. maka sisa 1 elektron itu turut terlibat dalam pembentukan orbital hibrida sehingga radikal bebas seolah seperti PEB.
Jumlah orbital = 3 + 1 = 4, bermakna 4 orbital → sp3.
Geometri elektronnya tetrahedral, dan geometri molekulnya piramida segitiga.

ClO:
Jumlah elektron valensi Cl + O = (7 + 6) = 13;
13/8 = 1, bermakna 1 ikatan, sisa 5;
5/2 = 2, bermakna 2 PEB dan sisa 1 elektron berupa radikal bebas.
→ O punya keelektronegatifan = 3,44. 3,44 > 2,80. maka sisa 1 elektron itu turut terlibat dalam pembentukan orbital hibrida seolah seperti PEB.
Jumlah orbital = 1 + 2 + 1 = 4, bermakna 4 orbital → sp3.
Geometri elektronnya tetrahedral, dan geometri molekulnya planar/linier.

ClO2:
Jumlah elektron valensi Cl + 2.O = (7 + 2.6) = 19;
19/8 = 2, bermakna 2 ikatan, sisa 3;
3/2 = 1, bermakna 1 PEB dan sisa 1 elektron berupa radikal bebas.
→ O punya keelektronegatifan = 3,44. 3,44 > 2,80. maka sisa 1 elektron itu turut terlibat dalam pembentukan orbital hibrida seolah seperti PEB.
Jumlah orbital = 2 + 1 + 1 = 4, bermakna 4 orbital → sp3.
Geometri elektronnya tetrahedral, dan geometri molekulnya bengkok/bentuk V.

ClO3:
Jumlah elektron valensi Cl + 3.O = (7 + 3.6) = 25;
25/8 = 3, bermakna 3 ikatan, sisa 1 elektron berupa;
→ O punya keelektronegatifan = 3,44. 3,44 > 2,80, maka sisa 1 elektron itu turut terlibat dalam pembentukan orbital hibrida seolah seperti PEB.
Jumlah orbital = 3 + 1 = 4, bermakna 4 orbital → sp3.
Geometri elektronnya tetrahedral, dan geometri molekulnya piramida segitiga.

Referensi: I.A.S Chemistry oleh Bhagi dan Raj, Khrisna’s, New Delhi, 2010

Tidak ada komentar:

Posting Komentar

Posting Lebih Baru Posting Lama Beranda
Langganan: Posting Komentar (Atom)

meCKZINK

Memuat...

Arsip Blog

Topik

asam dan basa buffer hidrokarbon kesetimbangan kimia kimia kimia unsur laju reaksi makromolekul polimer reaksi redoks sel elektrokimia senyawa karbon soal OSN soal osp soal un termokimia unsur radioaktif

Popular Posts

  • Penyetaraan Reaksi Redoks: KI + H2SO4 → K2SO4 + I2 + H2S + H2O
    Berikut ini penyelesaian tiga metode penyetaraan reaksi redoks KI + H 2 SO 4  → K 2 SO 4  + I 2  + H 2 S + H 2 O Proses penyetaraan setiap m...
  • Penamaan Alkana dengan Cabang Alkil Berjarak Sama dari Ujung Rantai Utama
    Berikut ini contoh penerapan aturan IUPAC terbaru untuk penamaan (nomenclature) senyawa organik. Pada tulisan ini dikhususkan pada bahasan g...
  • Struktur Senyawa Hidrokarbon Alkana Model Skeletal
    Ada dua cara menggambarkan struktur molekul senyawa hidrokarbon yang diketahui rumus kimianya. Penggambaran dapat dilakukan dengan cara manu...
  • Penyetaraan Reaksi Redoks: P2I4 + P4 + H2O → PH4I + H3PO4
    Persamaan reaksi redoks P 2 I 4 + P 4 + H 2 O → PH 4 I + H 3 PO 4 ini nampaknya sederhana namun proses penyetaraannya dengan metode yang ...
  • Cara Menentukan Harga Entalpi Reaksi
    Penentuan Harga Entalpi Reaksi . Perubahan $\Delta$H reaksi dapat ditentukan dengan beberapa cara, yakni dari hasil eksperimen, dari penera...
  • Golongan Halogen atau Unsur Golongan VIIA
    Unsur yang termasuk  golongan halogen atau golongan VIIA adalah fluor (F), klor (Cl), brom (Br), iod (I), dan astat (As). Astat ditemukan...
  • Contoh Soal Diagram Latimer dan Penentuan Potensial Reduksi Standar
    Beberapa soal terkait penentuan potensial reduksi standar dapat ditentukan dengan beberapa cara. Salah satu caranya adalah menggunakan diagr...

Navigasi

  • Home
  • disclaimer
  • sitemap
Ehcrodeh. Diberdayakan oleh Blogger.
Copyright © KMA. Template by : Petunjuk Onlene